Phospholipase C (PLC) genes from *Physcomitrella patens*: Physiology and molecular biology

Elmar Hartmann, Elena Gräbe-Abts, Koji Mikami, Franz Mittmann, Alexander Repp,
Free University Berlin, Plant Physiology, 14965 Berlin, Koenigin-Luise-Strasse 12-16
Contact e-mail: hartmann@zedat.fu-berlin.de

Phospholipid metabolism plays an important role in signal transduction pathways of plants. We could isolate all genes of the biochemical pathway of phospholipids (Fig. 1). I will report only about Phospholipase C. PLC has the main regulatory function in the phospholipid signal cascade (1, 2, 3). We isolated 4 PLC-genes from *Physcomitrella patens*. PpPLC1 and PpPLC2 were cloned in full length, and PpPLC3, PpPLC4 as ESTs. The sequences of PLC1 and PLC2 show an interesting sequence difference. PLC1 and PLC2 have no PH-motive, what is typical for all PLCs so far known from plants. PpPLC2 has in contrast to PpPLC1 an EF-hand (Fig. 2). We expect different functions of both enzymes. PLC1 and PLC2 were expressed in E. coli and the enzyme activity determined. The intracellular distribution was visualized by GFP as reporter gene. The distribution of GFP-labelling suggests membrane association and interaction with chloroplasts. The knock-out of PpPLC1 could be performed by homologues recombination. It was no significant phenotype distinguishable, but a significantly reduced chlorophyll content in the knock-out mutant. Northern technique could be installed and expression patterns determined. We are especially interested in the phytochrome regulation, which is involved in the phototropic response of moss protonemata.

(2) Rhee, Sue Goo (2001) Regulation of phosphoinositide-specific phospholipase C. Ann.Rev.Biochem. 70, 281-312